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PREDICTING INVOLUNTARY SEPARATION OF ENLISTED PERSONNEL

1. INTRODUCTION

In the spring of 1977, Request for Personnel Research (RPR) 77-4, Development of E.ilistment
Standards for the Armed Forces, was sent from the Air Force Military Personnel Center (AFMPC) Inow
known as the Air Force Manpower and Personnel Center] to the Air Force liuman Resources Laboratory
(AFHRL). The basic objectives of RPR 77-4 included the following: (a) to develop a substitute for the
current Air Force enlistment standard, (b) to evaluate the Military Service Inventory (MSI) as a predictor of
attrition, and (c) to test the relative efficiency of the Motivational Attrition Prediction (MAP) method in a
binary classification problem, such as the prediction of retention versus attrition. Evaluation of the request
by the various divisions of AFHRL eventually led to the decision to cancel RPR 77-4 and to establish two
new requests, RPR 77-13, Development of Alternative Air Force Enlistment Standards, and RPR 77-14.
Development of Improved Methods for Predicting Involuntary Separation. The purpose of establishing two
new requests in place of the original was to facilitate the appropriate separation of research responsibility
within AFHRL. i.e., the first new request dealt with objectives (a) and (b) of RPR 77-4 listed above, and
the second dealt with objective (c). The Personnel Research Division (AFtIRL/PF) was tasked with RPR
77-13 and the Computational Sciences Division (AFHRL/SM) with RPR 77-14.

This report describes the research carried out by AFIIRL/SM in support of RPR 77-14. The basic
problem concerns predicting involuntary separation (attrition) within tile Air Force enlisted force. Specific
objectives of this study include the following: (a) to implement the MAI) computer program on the AFHRL
UNIVAC 1108 computer system, (b) to compare the predictive efficiency of the MAP method with that of
the AFtHRL multiple linear regression technique (referred to as TRICOR). (c) to compare MAP and
TRICOR with other predictive methodologies capable of handling binary criterion situations, and (d) to
evaluate the various predictive methodologies using other binary criteria such as graiuation/elimination
from Technical Training (TT), Basic Military Training (BMT). and Undergraduate Pilot Training (UPT). Tlis
last objective (d) is not addressed here but will be the subject of a subsequent report. The results included
here are restricted to predicting involuntary separation.

Tile next section describes the statistical methodologies compared. Three predictive methodologies
associated with regression theory were considered for use in this study. These methodologies will be
referred to as ordinary least squares (OLS), standardized least squares (SLS). and weighted least squares
(WLS). OLS was the methodology employed in the analyses described in Section V and, hence. is
discussed in the following section. SLS has been compared to MAP with regard to classification accuracy in
several problem settings (Beatty, 1977). Basically, the use of standardized least squares allows the creation
of a predictive model that is independent of the units of measurement since the independent variables have
been normalized to zero mean and unit variance. This methodology was tested in the present study and, as
expected, yielded classification accuracy results equivalent to those for O1.S. An in-depth examination of
the predictive efficiency of SLS will be conducted in the follow-up efforts referred to in objective (d) and
discussed briefly in the last section of this report. A consideration in applying OLS to a predictive problem
involving a binary criterion is that the error variances are unequal. Although the application of OLS results
in unbiased estimates of the regression coefficients, tile estimates are inefficient since they will not have the
minimun variance property among the class of unbiased estimators. Performance of the WLS computations
()raper & Smith, 1966) results in constant error variances allowing a possible decrease in the variance
associated with each estimated regression coefficient. Although WLS offirs a potential improvement to
OLS. its capability to accurately classify individuals as successes/failures was not examined in detail since
(a) a study using a quickly assembled WLS computer programming package produced classification
accuracy results similar to those tor OLS, (b) some WLS analyses yielded nonsensical results, and (c)
Implementation of an efficient WIS computer programming package to perform analyses similar to those
tor OLS would not have allowed timely completion of the milestones associated with this research effort.
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Following the discussion of statistical methodologies employed are sections on the airman population,

description of predictive variables, selection of subsamples, model formulation and analysis, and

comparison of computer resources required. Numerous tables are displayed for comparative purposes, and

results and recommendations are discussed last.

I!. DESCRIPTION OF STATISTICAL METHODOLOGIES

The statistical methodologies examined in this study for their ability to correctly classify individuals
as successes/failures are the following: TRICOR, a computer programming package containing a stepwise
regression algorithm; MAP, a computerized algorithm based on maximum likelihood estimation and utility
theory; and BAYS, a computerized algorithm utilizing Bayes' formula. The stepwise regression theory of
TRICOR is described in numerous publications (Dixon, 1968; Draper & Smith, 1966; Efroymson, 1960;
Goldberger, 1961; Goldberger & Jochems, 1961; Pope & Webster, 1972), and the maximum likelihood
estimation and utility theory of MAP is documented in AFMPC publications (Dempsey & Fast, 1976:
Dempsey, Fast, & Sellman, 1977). A brief description of the important characteristics of BAYS will be
presented here, and a more detailed description is available in the computer-based SMSM program
documentation library at AFHRL.

Although reader familiarity with stepwise regression theory and MAP maximum likelihood estimation
and utility theory is assumed, a comparison of the limitations of the computerized implementations of the
two methodologies as they exist on the AFHRL UNIVAC 1108 computer system is important to
researchers who want to use either of the programs. When interfaced with a compatible lit table
subroutine, TRICOR has the capability to accept a data file containing information on up to 399 predictor
variables and 9,999 cases per subsample. In contrast, the current version of MAP can accept a data file
containing information on 20 predictor variables and the maximum number of cases allowable can be
estimated by the following formula:

NCASES 160,000
NVARS + 3

where NCASES represents the number of cases and NVARS represents the number of independent
variables. For example, MAP problems utilizing 5, 7, 13, or 17 independent variables allow processing of
data files containing approximately 2 X 104, 1.6 X 104, 101, or 8 X 103 cases, respectively. An important
consideration for a potential MAP user is that the program utilizes an iterative technique (Brown, 1967) to
solve a system of simultaneous nonlinear equations. As will be observed in subsequent analyses. the
computerized algorithm does not always converge, denying the researcher a direct comparison of the
predictive accuracies of MAP versus TRICOR or BAYS.

BAYS. a computer program whose development was based on the Attribute Bayesian Classification
Decision (ABCD) technique (Moonan, 1972), utilizes Bayes' formula to compute probabilities of class
membership for each case, with the result that an individual is assigned to the criterion category which has
the highest a posteriori probability. An important improvement to t'e ABCD technique was the
implementation of a stepwise procedure in the model-building algorithmr whereby variables can be
eliminated after they have been added to the predictive scheme. Hit tables, which indicate the number of
cases correctly classified, are used to select the predictor variables that most effectively discriminate among
the criterion categories. At each stage of the model-building procedure, the predictive composite is formed
which corresponds to the highest classification accuracy resulting from all possible additions (or deletions)
of one variable to (or from) the predictive composite existing at the previous stage. As described in Section
V, several random samples of the population were constructed specifically to estimate empirical
probabilities.

Aside from run time constraints which will be discussed later, BAYS has the capability to accept a
data file containing information on 200 independent variables having 63 categories each; however, the total
number of categories for all independent variables must not exceed 2000. Since the application of the
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BAYS algorithm is restricted to analysis of categorical independent and dependent variables, a
categorization was performed on each independent variable with the idea of minimizing the amount of
information lost in the process. This categorization requirement precluded a BAYS analysis of models
containing interactive terms. At present, BAYS does not have the capability to classify individuals in an
operational setting since it does not retain information on the disposition of each case. Information is
retained only on the disposition of a group of cases in the form of a hit table. The performance of a
proposed work effort would rectify this deficiency. In addition, the work effort proposes that BAYS be
modified to utilize a variable packing factor for storing cases on a record, dynamic storage allocation, and
computational shortcuts to decrease the number of data file passes.

I. FIRST-TERM AIRMAN POPULATION

The population for this study, which consisted of 11.231 airmen who entered the Air Force between
April and July 1972, was selected for two major reasons: (a) the data were immediately available since the
population comprised a data file prepared to support RPR 77-13, and (b) the population was
characteristically similar to the one examined by Dempsey et al. (1977) which consisted of airmen who
entered the Air Force between June and August 1972. In order that each case could be classified into a
criterion category in a meaningful way, separation designation numbers (SDNs) were grouped and recoded
in the following manner: SDNs reflecting normal separations or active duty status were recoded to a value
of one and SDNs reflecting undesirable losses such as marginal productivity/inaptitude, unfitness, or
unsuitability were recoded to a value of zero. This definition of the criterion categories was coordinated
with AFMPC. As a result, of the 11,231 airmen in the population, 7,694 were recoded to "one" with the
remaining cases recoded to "zero" (i.e., 68.5% of the cases were coded as successes, and 31.5% were coded
as failures).

IV. DESCRIPTION OF PREDICTOR VARIABLES

As previously mentioned in Section III, predictor variable information was available from a data file
prepared to support RPR 77-13. Information used in the creation of that file originated from a data file
created for a previous work effort and the Processing and Classification of Enlistees (PACE) file at AFHRL.
Complete information on the following variables was available for all airmen in the population:

I. Scores from the aptitude tests (Administrative, Mechanical, Electrical, and General) of the Armed

Services Vocational Aptitude Battery (ASVAB).

2. Scores fronm the Armed Forces Qualification Test (AFQT).

3. Prediction of drug use admission (PDA)score (LaChar. Sparks, Larsen, and Bisbee. 1974).

4. Military Service Inventory (MSI) score (Dempsey et al.. 1977).

5. Iducation Number of years required to reach highest level of education.

0. )cpendents ('odcd as 0 ( 1 ) denoting number of dependents at enlistment less than or equal to
2 (greater than 2). i.e., this variable was assigned a value of O if the number of dependents at enlistment was
less than three, and assigned a value of I if the number of dependents at enlistment was greater than two.

7. Hligh school courses The following courses were coded as I (0) denoting completion
(noncom piet ion):

a. Algebra

b. Biology

c. 'hemislry

d. Art

7



e. Geometry

f. Photography

g. Physics

h. Trigonometry

i. English

j. Home Economics

8. Age - Age in years at enlistment.

Tables Al through Al3 in Appendix A present distributions, means, standard deviations, and
intercorrelations of the predictor variables for the 11,231 case population. Many of the aforementioned
variables were recoded (transformed) during the analysis phase of the study; however, a description of each
transformation will be deferred until the next section.

V. DATA ANALYSIS

Creation and Characteristics of Subsamples

Three random samples of 1,500, 3,000, and 6,000 cases each were drawn from the population with
the requirement that the three samples of each particular size contain IO1/o, 35%, and 50% involuntary
dischargees. Each case could appear only once in each sample but could appear in more than one sample.
Each of the nine samples was randomly separated into three subsamples. A schematic representation of the
subsample layout is shown in Figure 1. Hereafter, the term "base rate" referred to in the figure is defined as
the percentage of correct classifications that would result if all individuals in the subsample were classified
into the criterion category representing normal separations or active duty status. Subsamples 3N + I and 3N
+ 2, N = 0, 1, 2 ... , 8 were used as validation and cross-validation subsamples, respectively, in the analysis
of each subsample size-base rate combination. The empirical probabilities for the BAYS computations were
derived from subsamples 3N + 3, N = 0, I, 2 .. 8. Although a wide range of base rates was studied in
order that the subject methodologies could be compared in a variety of problem settings, attention was
primarily focused on the 65/, subsample base rate which closely approximates the 68.5% population base
rate.

8



Subsample
Sample # Sample Size Subsample # Size P Q

1 500 90 10
1 1,500 2 500 90 10

3 500 90 10

4 500 65 35
2 1,500 5 500 65 35

6 500 65 35

7 500 50 50
3 1,500 8 500 50 50

9 500 50 50

10 1.000 90 10

4 3,000 11 1,000 90 10
12 1,000 90 10

13 1,000 65 35

5 3,000 14 1,000 65 35
15 1.000 65 35

16 1,000 50 50
6 3,000 17 1,000 50 50

18 1,000 50 50

19 2,000 90 10
7 6,000 20 2,000 90 10

21 2,000 90 10

22 2,000 65 35
8 6,000 23 2,000 65 35

24 2,000 65 35

25 2,000 50 50
6,000 26 2,000 50 50

27 2,000 50 50

P - base rate

Figure 1. Subsample layout.

Model Formulation and Analysis

The methodological comparisons began with the set of independent variables, called Variable Set I,
which comprised the predictive model developed by Dempsey et al. (1977). Four additional sets of
independent variables, denoted Variable Sets II V. were examined and are listed in Table I. Factors
influencing the selection of Variable Sets II- V were the following: (a) results of analyses on Variable Set I,
(b) a regression of the criterion on a large number of independent variables, (c) large increases in
"turnaround" time as the number of independent variables increases associated with the BAYS
computations, (d) limitations on the number of predictor variables compatible with a MAP analysis, and (e)
coordination with the AFHRL focal point on RPR 77-13 concerning results of analyses supporting that
research effort.



Table 1. Sets of Independent Variables

I U Il IV V

Admin + Elec a  Mechanical Mechanical Administrative Administrative
AFQbTh Electrical Electrical Mechanical Mechanical
MSI General PDA Electrical Electrical
EDUCe MSI EDUCc General General
Dependents Education Art MSI MSI
Aged Art Geometry Education EDUCc

Geometry Photography Algebra Algebra
Photography English Biology Biology
English Home Economics Chernistry Chemistry

Geometry Geometry
Physics Physics
Trigonometry Trigonometry
English English
Age Agee

aSum I normalized) of tile scores fron the administrative and electrical tests of the ASVAB.
bNotmalited score.
CCoded as 01) denoting number of years required to reach highest level of education less than 12 (greater than or

equal to 12).
dCoded as 0 1) denoting age (in years) at time ot enlistmtent less than 19 (greater than or equal to 19).
eCoded as 0 (1) denoting age tin years) at time of enlistment equal to 17 (greater than 17).

Tables A14 through A27 in Appendix A. which will hereafter be referred to as "hit tables." present
results of the MAP. TRICOR, and BAYS methodologies applied to a validat!on and cross-validatiott
subsample for each subsample size/base rate/variable set combination. An examination of the first set of
results in Table Al 4 provides the following in formal ion. For the 500 case validation sutbsample frotm a MAP
problem involving a 50'. base rate. 157 individuals who were successes (i.e., assigned a criterion value of1 I)
were classified as successes and 173 individuals who were failures (i.e., assigned a criterioij value of 0) were
classified as failures. In addition, 77 individuals who were failures were classified as successes. and 93
individuals who were successes were classified as failures. Therefore, for this particular validatitn
subsample. 330 (or 157 + 173) individuals were correctly classified and 170 (or 77 + 93) individuals were
incorrectly classified. The classification accuracy for the validation subsample was 66.0'; and for the
cross-validation suhsample was 66.4,. The remaining hit tables comprising Tables A 14 through A27 can be
similarly interpreted.

As can be observed fron these tables, there is little difference among the methodologies in their
ability vo correctly classify tile sampled cases into the two criterion categories. lor example. the
classification accuracies from applying MAP and TRICOR tot the validation and cross-validation subsamples
using Variable Set I differed by no more than 2'.1 for the 18 subsatuple size/base rate combinattons. with

neither methodology exhibiting clear sup)eriority. In fact. 15 of the 18 differences were less that 1"; . For
tile nine validation subsamples. the classificatior accuracies for MAP were greater than those for TRICOR
for five problems and equal tot two problems, and for the nine cross-validation subsantples. the
classification accuracies for MAP were greater than those for TRI('OR for four problems and equal for
two problems. As shown in lables A14 and Alb. tile classification accuracies from applying MAP and
BAYS to Variable Set I differed b} tit more than 3'; for all subsample size/base rate combinations with a
tajority of tihe dileretces heinv less Iltan I';. I-or [lte nine validation subsaniples. tile classification
accuracies for BAYS Acie tcatei than tltose )r MAP for five problems and equal for two problems. and
for the [itie Co ss-valtdation tusitmples. ihle classification accuracies tor BAYS were treate than those for

MAP for three prohletnts and less thati thie for MAP Io six problems. A similar comparison for BAYS and
[RI(OR can he drtslc trill 1tI's A 14 tnI Al 5. As belfore, a maotority of tile differences were less thatn

If



1%. For the 18 subsample size/base rate combinations, the classification accuracies for BAYS were greater
than those for TRICOR for eight problems and equal for two problems. A comparison of classilication
accurq- ;:, among the three methodologies across all variable sets provides similar results, Regarding the
performance of the algorithms as a function of base rate, sample size. or variable set, there was little
difference in their abilities to correctly classify individuals as successes/failures. The application of each
methodology increases classification accuracy substantially (i.e.. an improvement of approximately 13'; to
23'1) over the base rate for the subsamples containing 5(Y' involuntary dischargees: however, the
improvement in classification accuracy decreases dramatically (i.e.. an improvement of at most I I',) for the
subsamples containing 35% involuntary dischargees and becomes nearly non-existent (i.e.. an improvement
of at most 2%) for the subsamples containing 10% involuntary dischargees. As previously mentioned, tile
MAP algorithm did not converge for all problems which can be witnessed by the omission of several hit
tables: therefore, all comparisons between MAP and BAYS or TRICOR will refer, of course, to the
problems for which the MAP algorithm converged. It should be noted that for the three 65% base rate
problems utilizing Variable Set Ill, the TRICOR classification accuracy was better than the MAP
classification axcuracy in all cases: however, when contemplating the significance of this result,
consideration should be given to the large number of comparisons that were made in which none of the
methodologies showed clear superiority.

Using the AFHRL au(omatic interaction detector algorithm, AID-4 (Gott & Koplyay, 1977: Koplyay.
Gott. & Elton, 1973), interactive terms were identified in an effort to gauge the im proveIIent of

classification accuracy by adding these variables to the appropriate set of predictors. As mentioned earlier.
the BAYS algorithm precludes analysis of models containing interactive terms. Since the classification
accuracy results of this effort were so similar to the previous results, the corresponding hit table summaries
were not reproduced in this report. When interactive ternis were introduced into the MIAP algorithm.
significant convergence problems were encountered. For example, when Variable Sets 11 and III were
augmented with interactive terms, the MAP algorithm did not converge for each problem. Some success in
achieving convergence was realized by performing MAP analyses on a subset of the augmented Variable Set
III: however, a similar attempt to achieve convergence was performed on the augmented Variable Set II
with little success resulting. Based on (lie subsample size/base rate combinations for which the MAP
algorithm converged for problems with and without interactions, little predictive efficiency was gained by
allowing interactive ternis to be included in the model. In fact, tie largest improvement observed in
classification accuracy was 1.4¢' with most of the differences being less than I';. Similar results were
observed for TRICOR since the largest improvement in classification accuracy was 1.0'; with most of the
differences being less than I ,. Although the inclusion of interactive terms in these analyses did yield some
increases in classification accuracy, the magnitude of the increases would not justi fy development of a more
complicated model.

Comparison of Required Computer Resources

Although the classification accuracy results are similar for TRICOR. BAYS, and MAP, there are
differences in tie computer resources required to perform the computations for each methodology. All of
the comparisons to be presented refer to the version of each computer program presently operational on
the AFIIRL UNIVAC 1108. The magnitude of the differences could vary depending onl the compnuter
system employed, and with :tn extensive research effort, each predictive algorithm could probably he
streamlined with respect to input/output (I/O) time. central processing unit (CPU) time or mass storage
required; however. .the contents of this section should serve as a valuable guide for researchers who wish to
estimate the computer resources required to perform each methodology on the AFIIRI_. UNIVAC 1108 oit a
similar computer system without drastically modifying tile computerized algorithms. If one of these
methodologies is to be used repeatedly as anl operational tool to solve tle type of problem investigated in
this report. ati effort should be in itiated to tailor the identified algorithm to the specific requirement s ot
that appication.

As noted earlier. ati increase in the number of independent variables associated with a BAYS problem
results in a dramatic increase in "turniaround- time. Tie total times required for BAYS processing of ', 1),
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and 14 member variable sets for 500 case subsamples were approximately 27, 42, and 65 minutes.
respectively, with over 89%, of those times allocated to i/O processing: moreover, an increase in the number
of cases per subsample resulted in a proportionate increase in total (and i/O) processing time. The total
times required for MAP processing of 6, 9, and 14 member variable sets were approximately 3%, to 4%. 4,
to 5%. and 7% to 10%, respectively, of the total times required to process a similar BAYS problem with the
CPU times comprising approximately 77'/ to 92% of the total time. A direct comparison of TRICOR
processing times with MAP and BAYS was not available since the TRICOR processing involved
computations germane to a follow-up research effort but not required for the results herein; therefore, any
estimates of TRICOR processing times should be considered overestimates. The total times required for
TRICOR processing of 6. 9. and 14 member variable sets were approximately 13 to 17%. 8% to 1 3,, and
5'7 to 7%, respectively, of the total times required to process a similar BAYS problem with the CPU times
comprising approximately 87 to 15% of the total time. In addition, the 1/O times comprise approximately
640/%. to 651,, 72%7 to 74%, and 76% to 80% of the total times for the 500, 1000, and 2000 case subsamples,
respectively.

The I/O time required for a MAP problem is small in relation to the total time required since a large
amount of information is retained in mass storage, necessitating very little file handling: however, mass
storage limitations restrict the size of problems that can be processed, as was reflected in an earlier
discussion. The total time required to process a MAP problem surpasses the total time required to process a
similar TRICOR problem for Variable Set 4 for most problens: therefore, it appears that the TRICOR
algorithm becomes more efficient in relation to tile MAP algorithm with respect to total time required as
the number of independent variables associated with the problem increases. The CPU times required to
process a BAYS or MAP problem are comparable, but tile I/O times presently required to process BAYS
pioblenis limit the use of this methodology to the solution of smaller problems than could be processed by
the TRICOR or MAP algorithms. Of course, for problems involving a large number of cases and predictor
sariables. the TRICOR algorithm presently provides a method to seek an acceptable solution within
reasonable time and mass storage constraints.

VI. SUMMARY AND RECOMMENDATIONS

In order to measure the abilities of the MAP. BAYS, and TRICOR algorithms to correctly classify
individuals as normal dischargees (including active duty status) or involuntary dischargees. a population of
11 .231 airmen was selected that was characteristically similar to one that had served as a data base for a
MAP analysis documented by Dempsey et al. ( 1977). The current effort is the first phase in a project to
examine the capabilities of each methodology to correctly classify individuals in binary criterion situations
such as graduat ion/eliminat ion fronl various TT courses. UIIT and BMT.

To cxamine the classification accuracies of the statistical methodologies in a variety of problem
settings, subsamples were constructed so that all possible combinations of three subsample sizes (500, 1000.
and 2000 cases) and base rates (50'X. 65,. and 90%) could be analyzed Ifr each set of predictor variables.
Several subsets of the following variables and/or transformations of the variables were selected for
development of predictive models by each ntethodology: (a) scores from tile aptitude tests (Administrative.
Mechanical. Electrical. and General) of the ASVAB. (b) AFQT score. (c) PDA score. (d) MSI score. (e)
number of years required to reach highest level of education, (f) number of dependents at enlisttnerit,(g)
age in years at enlistment, and (h) high school completion of algebra. biology, chemistry, art. geometry,
photography. physics. trigonometry. Fnglish, and ho)me economics. The classification accuracies and
computer resource requirements associated with the application of each statistical methodology to all
subsample size/base rate/variable set combinations were compared, resulting in several general conclusions.
Overall. there was very little difference ationg the methodologies in their ability to correctly classif'
individuals as successesffailures. Application of each methodology resulted in a substantial increase in
classification accuracy over the base rate for the subsamples containing 50 involuntary dischargces:
however. this improvement became less pronounced for the subsamples containing 35'7 involuntary
dischargees and decreased even further for tie subsamples containing 1014 involuntary dischargees. The
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inclusion of AID-4 identified interaction terms in tile model-building process did not yield a large enough
increase in classification accuracy to justify the development of a more complicated model. Convergence
problems were encountered during the MAP analyses especially when some of tile sets of predictive
variables were augmented with interactive terms- therefore, a comparison of predictive efficiencies among
all methodologies does not exist for every subsample size/base rate/variable set combination.

Although the classification accuracy results were similar, there were differences in the computer
resources required to process the data for each methodology. For all analyses, the total time required to
process a BAYS problem was appreciably longer than the total time required to process a similar MAP or
TRICOR problem, due mainly to the large amount of 1/O time associated with performing the BAYS
computations. If some proposed changes to the BAYS algorithm are implemented, the I/O time required
for processing a BAYS problem possibly could be reduced by one-half; however, even with this reduction,
the total times associated with the BAYS problems would have greatly surpassed the times for similar MAP
or TRICOR problems. Although the total time required for processing each MAP problem was appreciably
less than that required for BAYS, the CPU time required for processing a MAP problem increases rather
rapidly as the number of independent variables increases- consequently, it is especially important with
MAP, as with the other methodologies, to employ an efficient variable selection technique. Due to mass
storage limitations, an increase in the number of independent variables associated with a MAP problem
causes a corresponding decrease in the maximum number of cases allowable for analysis. If the number of
cases and predictor variables associated with a particular problem is large, the superior data-handling
capabilities of the TRICOR regression algorithm assume added significance; in fact, TRICOR may be the
only feasible method of the three to obtain a solution.

Currently. AFHRL is conducting two follow-up studies to this effort. The first of these examines the
capabilities of the MAP, TRICOR, and BAYS computerized methodologies to correctly classify individuals
as TT graduates/failures and the second compares the abilities of each methodology to correctly identify
BMT graduates/failures. A major difference between the present and new efforts is that the test design for
the TT(BMT) study requires the validation subsamples to be randomly selected from personnel who entered
TT(BMT) in 1976 and the cross-validation subsamples to be randonly selected from personnel who entered
TT(BMT) in 1077 rather than selecting the validation and cross-validation subsamples from the same
population. Also the predictive efficiency of standardized least squares will be measured in a variety of
problem settings. Since the validation and cross-validation subsainples are not necessarily homogeneous.
standardized least squares predictive models which are independent of the units of measurement, may fare
better than ordinary least squares predictive models. The BMT and TT research efforts should be pursued
since they more closely simulate a "real world" prediction problem in that data from one time period are
used to develop a model for prediction into the next time period.
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Table Al. Distribution of the ASVAB Administrative
Aptitude Test Scores for the First-Term

Airman Population

First-Term Airmen Failling
Store Interval in Score Interval
(Percentile) Number Percent

<30 1,157 10.3
30-39 775 6.9
40-49 1,761 15.7
50-59 2,092 18.6
60-69 2,012 17.9
70-79 1,375 12.2
80-89 1,158 10.3
90-99 901 8.0

Table A2. Distribution of the ASVAB Mechanical
Aptitude Test Scores for the First-Term

Airman Population

wirst-Term Airman Falling
Score Interval in Score Interval

(Percentile) Number Percent

<30 793 7.1
30-39 898 8.0
40-49 1,161 10.3
50-59 2,589 23.1
60-69 2,027 18.0
70-79 1.375 12.2
80-89 1,250 11.1
90-99 1,138 10.1

Table A3. Distribution of the ASVAB Electrical
Aptitude Test Scores for the First-Term

Airman Population

First-Term Airmen Failine
Score Interval in Score interval

(Percentile) Number Percenn

<30 538 4.8
30-39 616 5.5
40-49 1,728 15.4
50-59 1,969 17.5
60-69 2,059 18.3
70-79 1,103 9.8
80-89 1,820 16.2
90-99 1,398 12.4
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Table A4. Distribution of the ASVAB General
Aptitude Test Scores for the First-Term

Airman Population

First-Term Airmen Falling
Score interval In Score Interval
(Percentile) Number Percent

<50 2,634 23.5
50-59 1,979 17.6
60-69 2,522 22.5
70-79 1,521 13.5
80-89 1,483 13.2
90-99 1,092 9.7

Table A5. Distribution of the AFQT Scores
for the First-Term Airman Population

First-Term Airmen Failing
Score interval In Score Interval

(Percentile) Number Percent

<30 262 2.3
30-39 1,793 16.0
40-49 1,544 13.7
50-59 1,781 15.9
60-69 1,599 14.2
70-79 1.486 13.2
80-89 1,791 15.9
90-99 975 8.7

Table A6. Distribution of the PDA Scores
for the First-Term Airman Population

First-Term Airmen Failing
in Score interval

Score Interval Number Percent

0-2 2,318 20.6
3-5 3,498 31.1
6-8 2,623 23.4

9-11 1,459 13.0
12-14 766 6.8
15-17 344 3.1

>17 223 2.0
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Table A 7. Distribution of the MSI Scores
for the First-Term Airman Population

First-Term Airmen Failing
in Score Interval

Score interval Number Percent

0-3 3,321 29.6
4-7 4,164 37.1
8-11 2,394 21.3
12-15 936 8.3
16-19 318 2.8

> 19 98 .9

Table A8. Distribution of Education
for the First-Term Airman Population

First-Term Airmen Failing
interval in Interval
(Years) Number Percent

<12 1,542 13.7
12 8,862 78.9
13 364 3.2
14 250 2.2

>14 213 1.9

Table A9. Distribution of Number of Dependents
at Enlistment for the First-Term

Airman Population

First-Term Airmen Falling
in interval

interval Number Percent

0- 2 11,115 99.0
3-5 116 1.0

Table AJO. Distribution of CompletionfNoncompletion of
High School Courses for the First-Term Airman Population

Completion Noncompietion

Course Number Percent Number Percent

Algebra 8,262 73.6 2,969 26.4
Biology 8,417 74.9 2.814 25.1
Chemistry 3,511 31.3 7,720 68.7
Art 1,567 14.0 9,664 86.0
Geometry 5,597 49.8 5,634 50.2
Photography 1,653 14.7 9,578 85.3
Physics 2,045 18.2 9,186 81.8
Trigonometry 2,172 19.3 9,059 80.7
English 10,593 94.3 638 5.7
Home Economics 1,905 17.0 9,326 83.0
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Table A I. Distribution of Age at Enlistment
for the First-Term Airman Population

First-Term Airmen Failing
Interval in Score Interval
(Years) NuMber Percent

17 1,432 12.8
18 4,126 36.7
19 2,990 26.6
20 1,452 12.9
21 609 5.4
22 331 2.9
23 137 1.2

>23 154 1.4

Table A 12. Means and Standard Deviations
of the Predictive Variables for the

First-Term Airman Population

Predictive Variable Mean S0

Administrative 56.71 20.67
Mechanical 58.97 20.31
Electrical 62.02 20.08
General 62.03 17.95
AFQT 60.82 19.91
PDA 6.16 4.30
MSI 6.29 4.28
Education 11.3 .91
Dependents .00 .02
Algebra .74 .44
Biology .75 .43
Chemistry .31 .46
Art .14 35
Geometry .50 .50
Photography .1 5 .35
Physics .18 .39
Trigonometry .19 .40
English .94 .23
Home Economics .1 7 .38
Age 18.84 1.48
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Table A14. Hit Tables of MAP Applied to Variable Set I for
Each Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 157 77 163 81
Base Rate - 50% Predicted 0 93 173 87 169
Classification Accuracy (%) 66.0 66.4

Subsample Size - 1000 Predicted 1 332 131 327 155
Base Rate - 50% Predicted 0 168 369 173 345
Classification Accuracy (%) 70.1 67.2

Subsample Size - 2000 Predicted 1 650 304 642 303
Base Rate - 50% Predicted 0 350 696 358 697
Classification Accuracy (%) 67.3 67.0

Subsample Size - 500 Predicted 1 299 11I 292 114
Base Rate - 65% Predicted 0 26 64 33 61
Classification Accuracy (%) 72.6 70.6

Subsample Size -- 1000 Predicted 1 561 176 536 188
Base Rate - 65% Predicted 0 89 174 114 162
Classification Accuracy (%) 73.5 69.8
Subsample Size - 2000 Predicted 1 1109 372 1090 369
Base Rate - 650X Predicted 0 191 328 210 331
Classification Accuracy (%) 71.8 71.0

Subsample Size - 500 Predicted 1 447 42 443 47
Base Rate --'90% Predicted 0 3 8 7 3
Classification Accuracy (7) 91.0 89.2

Subsample Size 1000 Predicted 1 894 89 898 94
Base Rate - 907 Predicted 0 6 11 2 6
Classification Accuracy (7) 90.5 90.4

Subsample Size 200C Predicted 1 1794 186 1795 189
Base Rate -- 90% Predicted 0 6 14 5 11
Classification Accuracy (5,) 90.4 90.3
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Table A15. Hit Tables of TRICOR Applied to Variable Set I for
Each Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 192 102 181 104
Base Rate - 50% Predicted 0 58 148 69 146
Classification Accuracy (%) 68.0 65.4

Subsample Size - 1000 Predicted 1 326 128 315 141
Base Rate - 50% Predicted 0 174 372 185 359
Classification Accuracy (%) 69.8 67.4

Subsample Size - 2000 Predicted 1 576 233 575 244
Base Rate - 50% Predicted 0 424 767 425 756
Classification Accuracy (%) 67.2 66.6

Subsample Size - 500 Predicted 1 290 101 288 102
Base Rate - 65% Predicted 0 35 74 37 73
Classification Accuracy (%) 72.8 72.2
Subsample Size - 1000 Predicted 1 562 177 536 183
Base Rate - 65% Predicted 0 88 173 114 167
Classification Accuracy (%) 73.5 70.3

Subsample Size - 2000 Predicted 1 1078 347 1053 345
Base Rate - 65% Predicted 0 222 353 247 355
Classification Accuracy (%) 71.6 70.4

Subsample Size - 500 Predicted 1 448 44 444 48
Base Rate - 90% Predicted 0 2 6 6 2
Classification Accuracy (%) 90.8 89.2
Subsample Size - 1000 Predicted 1 894 91 898 94
Base Rate - 90% Predicted 0 6 9 2 6
Classification Accuracy (%) 90.3 90.4

Subsample Size - 2000 Predicted 1 1797 190 1796 191
Base Rate - 90% Predicted 0 3 10 14 9
Classific, tion Accuracy (%) 90.4 90.2
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Table A 16. Hit Tables of BAYS Applied to Variable Set I for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size 500 Predicted 1 189 94 182 110
Base Rate - 50" Predicted 0 61 156 68 140
Classification Accuracy () 69.0 64.4

Subsamole Size - 1000 Predicted 1 346 155 333 178
Base Rate 50 ;X Predicted 0 154 345 167 322
Classification Accuracy (,) 69.1 65.5

Subsample Size 2000 Predicted 1 736 386 703 390
Base Rate 50% Predicted 0 264 614 297 610
Classification Accuracy (7,) (7.5 65.6

Subsample Size 500 Predicted 1 287 96 273 103
Base Rate - 657 Predicted 0 38 7) 52 72
Classification Accuracy (,) 73.2 69.0
Subsample Size - 1000 Predicted 1 589 204 558 203
Base Rate - 65% Predicted 0 61 146 92 147
Classification Accuracy (,) 73.5 70.5

Subsample Size - 2000 Predicted 1 1181 437 1186 445
Base Rate - 65% Predicted 0 119 263 114 255
Classification Accuracy ()72.2 72.0
Subsample Size - 500 Predicted 1 450 47 448 47
Base Rate - 90% Predicted 0 0 3 2 3
Classification Accuracy (%) 90.6 90.2
Subsample Size - 1000 Predicted 1 893 87 891 92
Base Rate - 90%, Predicted 0 7 13 9 8
Classification Accuracy (c) 90.6 89.9

Subsam ple Size - 2000 Predicted 1 1796 189 1796 196
Base Rate - 90% Predicted 0 4 I1 4 4
Classification Accuracy (%) 90.4 90.0
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Table A 17. Hit Tables of MAP Applied to Variable Set 11 for Each
Subsample Size - Base Rate Combination

VaNdation Cross Validation
Actual Actual

1 0 10

Subsample Size - 500 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (%)

Subsample Size - 1000 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (%)

Subsample Size - 2000 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (%)

Subsample Size - 500 Predicted 1 302 109 297 132
Base Rate - 65% Predicted 0 23 66 28 43
Classification Accuracy (%) 73.6 68.0
Subsample Size - 1000 Predicted 1 605 217 591 228
Base Rate - 65% Predicted 0 45 133 59 122
Classification Accuracy (%) 73.8 71.3

Subsample Size - 2000 Predicted 1 1161 412 1162 398
Base Rate - 65% Predicted 0 139 288 138 302
Classification Accuracy (%) 72.4 73.2

Subsample Size - 500 Predicted 1 449 47 445 49
Base Rate - 90% Predicted 0 1 3 5 1
Classification Accuracy (%) 90.4 89.2

Subsample Size - 1000 Predicted 1 900 89 898 91
Base Rate - 90% Predicted 0 0 11 2 9
Classification Accuracy (%) 91.1 90.7

Subsample Size - 2000 Predicted I
Base Rate - 90% Predicted 0
Classification Accuracy (%)

*The MAP algorithm did not converge.
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Table A18. Hit Tables of TRICOR Applied to Variable Set I for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 165 65 166 77
Base Rate - 50% Predicted 0 85 185 84 173
Classification Accuracy (%) 70.0 67.8

Subsample Size - 1000 Predicted 1 309 129 300 135
Base Rate - 50% Predicted 0 191 371 200 365
Classification Accuracy (X) 68.0 66.5
Subsample Size - 2000 Predicted 1 813 464 775 466
Base Rate - 50% Predicted 0 187 536 225 534
Classification Accuracy (%) 67.4 65.4
Subsample Size - 500 Predicted 1 295 103 289 122
Base Rate - 6517r Predicted 0 30 72 36 53
Classification Accuracy (%) 73.4 68.4
Subsample Size - 1000 Predicted 1 603 217 594 228
Base Rate - 65% Predicted 0 47 133 56 122
Classification Accuracy (%) 73.6 71.6
Subsample Size - 2000 Predicted 1 1162 409 1152 396
Base Rate - 65% Predicted 0 138 291 148 304
Classification Accuracy (%) 72.6 72.8
Subsample Size - 500 Predicted 1 449 46 450 48
Base Rate - 90% Predicted 0 1 4 0 2
Classification Accuracy (%) 90.6 90.4
Subsample Size - 1000 Predicted 1 897 88 895 89
Base Rate - 90% Predicted 0 3 12 5 11
Classification Accuracy (') 90.9 90.6
Subsample Size -- 2000 Predicted 1 1791 181 1792 177
Base Rate - 90'7 Predicted 0 9 19 8 23
Classification Accuracy (',) 90.5 90.8
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Table A 19. Hit Tables of BAYS Applied to Variable Set U for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 180 80 166 101
Base Rate - 507 Predicted 0 70 170 84 149
Classification Accuracy (%) 70.0 63.0

Subsample Size - 1000 Predicted 1 334 160 325 165
Base Rate - 50% Predicted 0 166 340 175 335
Classification Accuracy (%) 67.4 66.0

Subsample Size - 2000 Predicted 1 728 382 714 392
Base Rate - 50% Predicted 0 272 618 286 608
Classification Accuracy (7) 67.3 66.1

Subsample Size -- 500 Predicted 1 277 7) 256 104
Base Rate - 65% Predicted 0 48 96 69 71
Classification Accuracy (7) 74.6 65.4

Subsample Size - 1000 Predicted 1 593 204 590 217
Base Rate - 65% Predicted 0 57 146 (A1 133
Classification Accuracy (7') 73.9 72.3

Subsample Size - 2000 Predicted 1 1180 417 1158 425
Base Rate - 65'7 Predicted 0 120 283 142 275
Classification Accuracy (71 71.2 71 .t

Subsample Size 500 Predicted 1 44 44 44X 47
Base Rate -- 90'/ Iredictcd 0 I 03

Classification Accuracy (1 1A) 0.2

Subsample Size I000 Predicted I 2 SI 890 83
Base Rate 90 ; I-'1t. tt t I' ( Ie I 101 17

Classification Accurc. ('; I 90.7

Subsample Slit 2tXKO }'Ii hl I/c I 9')* 1 47 1797 186

Base Rate 90'; P',l 4 1 14
(lassificationr A tirai " 4 90).6



Table A20. Hit Tables of MAP Applied to Variable Set Ill for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 10

Subsample Size - 500 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (%)

Subsample Size - 1000 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (7t)

Subsample Size - 2000 Predicted I
Base Rate - 50% Predicted 0
Classification Accuracy (%)
Subsample Size - 500 Predicted 1 294 97 284 108
Base Rate - 65% Predicted 0 31 78 41 67
Classification Accuracy (%) 74.4 70.2
Subsample Size - 1000 Predicted 1 600 220 605 231
Base Rate - 65% Predicted 0 50 130 45 119
Classification Accuracy (%) 73.0 72.4
Subsample Size - 2000 Predicted 1 1273 667 1276 668
Base Rate - 65% Predicted 0 27 33 24 32
Classification Accuracy (%) 65.3 65.4
Subsample Size - 500 Predicted 1 450 43 448 44
Base Rate - 90% Predicted 0 0 7 2 6
Classification Accuracy (%) 91.4 90.8
Subsample Size - 1000 Predicted 1 900 86 895 84
Base Rate - 90% Predicted 0 0 14 5 16
Classification Accuracy (%) 91.4 91.1
Subsample Size - 2000 Predicted 1 1798 182 1796 183
Base Rate - 90% Predicted 0 2 18 4 17
Classification Accuracy (%) 90.8 90.6

*The MAP algorithm did not converge.
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Table A21. Hit Tables of TRICOR Applied to Variable Set HI for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 t 0

Subsample Size - 500 Predicted 1 191 82 185 92
Base Rate - 50% Predicted 0 59 168 65 158
Classification Accuracy (%) 71.8 68.6
Subsample Size - 1000 Predicted 1 317 129 318 142
Base Rate - 50% Predicted 0 183 371 182 358
Classification Accuracy (%) 68.8 67.6
Subsample Size - 2000 Predicted 1 731 350 685 349
Base Rate - 50% Predicted 0 269 650 315 651
Classification Accuracy (%) 69.0 66.8
Subsample Size - 500 Predicted 1 303 99 292 109
Base Rate - 65% Predicted 0 22 76 33 66
Classification Accuracy (%) 75.8 71.6
Subsample Size - 1000 Predicted 1 578 195 581 203
Base Rate - 65% Predicted 0 72 155 69 147
Classification Accuracy (%) 73.3 72.,
Subsample Size - 2000 Predicted 1 1097 331 1073 334
Base Rate - 65% Predicted 0 203 369 227 366
Classification Accuracy (%) 73.3 72.0
Subsample Size - 500 Predicted 1 446 39 446 41
Base Rate - 90% Predicted 0 4 11 4 9
Classification Accuracy (%) 91.4 91.0
Subsample Size -- 1000 Predicted 1 900 87 897 86
Base Rate - 90, Predicted 0 0 13 3 14
Classification Accuracy (%) 91.3 91.1
Subsample Size -- 2000 Predicted 1 1793 181 1795 177
Base Rate- 9017, Predicted 0 7 19 5 23
Classification Accuracy (%) 90.6 90.9
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Table A22. Hit Tables of BAYS Applied to Variable Set IN for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

0 1 0

Subsample Size - 500 Predicted 1 198 83 181 98
Base Rate - 50% Predicted 0 52 167 69 152
Classification Accuracy (%) 73.0 66.6
Subsam ple Size -- 1000 Predicted 1 374 176 367 190
Base Rate 50 /4 Predicted 0 126 324 133 310
Classification Accuracy (7,) 69.8 67.7
Subsample Size - 2000 Predicted 1 725 347 681 353
Base Rate 5017 Predicted 0 275 653 319 647
Classification Accuracy (5) 68.9 66.4
Subsainple Size 500 Predicted 1 291 102 291 115
Base Rate - 65/, Predicted 0 34 73 34 60
Classification Accuracy ('I%,) 72.8 70.2
Subsample Size 1000 Predicted 1 580 189 568 199
Base Rate - 655 Predicted 0 70 161 82 151
Classification Accuracy (5) 74.1 71.9
Subsample Size 2000 Predicted 1 1166 397 1156 402
Base Rate 65'5,  Predicted 0 134 303 144 298
Classification Accuracy(S) 73.4 72.7
Suhsample Size 500 Predicted 1 444 34 439 40
Base Rate 90', Predicted 0 6 16 II 10
Classification Accuracy (%) 92.0 89.8
Subsample Size 1000 Predicted 1 898 86 894 86
Base Rate 9 07, Predicted 0 2 14 6 14
Classification Accuracy (5) 91.2 90.8
Subsample Size 2000 Predicted 1 1791 178 1795 176
Base Rate - 90, Predicted 0 9 22 5 24
Classification Accuracy (7, 90.6 91.0
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Table A23. Hit Tables of MAP Applied to Variable Set IV for Each
Subsample Size - Base Rate Combination

Validation Cro Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 183 87 177 85
Base Rate - 50% Predicted 0 67 163 73 165
Classification Accuracy (%) 69,2 68.4

Subsample Size - 1000 Predicted I
Base Rate - 5011r Predicted 0
Classification Accuracy (%)

Subsample Size - 2000 Preatcted 1 705 376 711 370
Base Rate - 50% Predicted 0 295 624 289 630
Classification Accuracy (%) 66.4 o7.O

Subsample Size - 500 Predicted 1 274 85 271 105
Base Rate - 65% Predicted 0 51 90 54 70
Classification Accuracy (%) 72.8 68.2

Subsample Size - 1000 Predicted 1 608 220 602 241
Base Rate - 65% Predicted 0 42 130 48 109
Classification Accuracy (%) 73.8 71.1

Subsample Size - 2000 Predicted 1 1186 447 1190 443
Base Rate - 65% Predicted 0 114 253 110 257
Classification Accuracy (%) 72.0 72.4

Subsample Size - 500 Predicted 1 449 46 449 47
Base Rate - 90% Predicted 0 I 4 I 3
Classification Accuracy (%) 90.6 90.4

Subsample Size - 1000 Predicted I
Base Rate - 90, Predicted 0*
Classification Accuracy (X)

Subsample Size -- 2000 Predicted 1 1789 175 1786 168
Base Rate - 90% Predicted 0 I 25 14 32
Classification Accuracy (%) 90.7 90.9

-The MAP algorithm did not converge.
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Table A24. Hit Tables of TRICOR Applied to Variable Set IV for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 1 0

Subsample Size - 500 Predicted 1 171 76 152 76
Base Rate - 50% Predicted 0 79 174 98 174
Classification Accuracy (%) 69.0 65.2
Subsample Size - 1000 Predicted 1 343 164 339 170
Base Rate - 50% Predicted 0 157 336 161 330
Classification Accuracy (%) 67.9 66.9
Subsample Size - 2000 Predicted 1 615 274 609 287
Base Rate - 50% Predicted 0 385 726 391 713
Classification Accuracy (Cl 67.0 66.1

Subsample Size - 500 Predicted 1 262 77 254 93
Base Rate -- 651r Predicted 0 63 98 71 82
Classification Accuracy ('X) 72.0 67.2
Subsample Size - 1000 Predicted 1 609 224 605 242
Base Rate 6517 Predicted 0 41 126 45 108
Classification Accuracy (%) 73.5 71.3
Subsample Size - 2000 Predicted 1 1171 424 1165 418
Base Rate - 65'7 Predicted 0 129 276 135 282
Classification Accuracy (I) 72.4 72.4
Subsample Size - 500 Predicted 1 449 46 448 45
Base Rate - 90'% Predicted 0 1 4 2 5
Classification Accuracy (7) 90.6 90.6
Subsample Size 1000 Predicted 1 899 91 897 91
Base Rate 90% Predicted 0 1 9 3 9
Classification Accuracy (7 ) 90.8 90.6
Subsample Size 2000 Predicted 1 1796 183 1794 178
Base Rate 90, Predicted 0 4 17 6 22
Classification Accuracy ('1r) 90.6 90.8
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Table A25. Hit Tables of BAYS Applied to Variable Set IV (or V*) for
Each Subsample Size - Base Rate Combination

Validation CrOM Validation
Actual Actual

0 1 0

Subsample Size - 500 Predicted 1 181 79 165 88
Base Rate - 50% Predicted 0 69 171 85 162
Classification Accuracy (%) 70.4 65.4

Subsample Size - 1000 Predicted 1 345 165 353 188
Base Rate - 5010 Predicted 0 155 335 147 312
Classification Accuracy (%) 68.0 66.5

Subsample Size - 2000 Predicted 1 694 349 674 340
Base Rate - 50% Predicted 0 306 651 326 660
Classification Accuracy (%) 67.2 66.7

Subsample Size - 500 Predicted 1 281 89 280 113
Base Rate -- 65% Predicted 0 44 86 45 62
Classification Accuracy (%) 73.4 68.4

Subsample Size - 1000 Predicted 1 585 199 576 204
Base Rate - 65% Predicted 0 65 151 74 146

-Classification Accuracy (%) 73.6 72.2

Subsample Size - 2000 Predicted 1 1142 374 1111 390
Base Rate - 65% Predicted 0 158 326 189 310
Classification Accuracy (%) 73.4 71.0

Subsample Size - 500 Predicted 1 449 43 447 44
Base Rate - 90% Predicted 0 I 7 3 6
Classification Accuracy (%) 91.2 90.6

Subsample Size - 1000 Predicted 1 895 83 889 85
Base Rate - 90% Predicted 0 5 17 11 15
Classification Accuracy (%) 91.2 90.4

Subsample Size - 2000 Predicted 1 1792 181 1794 177
Base Rate - 907 Predicted 0 8 19 6 23
Classification Accuracy (%) 90.6 90.8

*Categorizing the predictive variables in Variable Sets IV and V resulted in identical sets of variables for BAYS
analyses.
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Table A26. Hit Tables of MAP Applied to Variable Set V for Each
Subumple Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 0 I 0

Subsample Size - 500 Predicted 1 190 95 177 88
Base Rate - 501 ,  Predicted 0 60 155 73 162
Classification Accuracy (%) 69.0 67.8

Subsample Size - 1000 Predicted I
Base Rate - 50'Z Predicted 0
Classification Accuracy (%)

Subsample Size 2000 Predicted 1 784 438 768 449
Base Rate - 50% Predicted 0 216 562 232 551
Classification Accuracy (%) 67.3 66.0

Subsample Size - 500 Predicted 1 273 80 269 98
Base Rate - 657 Predicted 0 52 95 56 77
Classification Accuracy (5) 73.6 69.2

Subsample Size - 1000 Predicted 606 224 603 244
Base Rate - 651;', Predicted 0 44 126 47 106
Classification Accuracy (%) 73.2 70.M

Subsample Size - 2000 Predicted 1 1178 424 1157 431
Base Rate - 6511, Predicted 0 122 276 143 269
Classification Accuracy (%) 72.7 71.3

Subsample Size - 500 Predicted 1 449 48 450 48
Base Rate 90/ Predicted 0 I 2 0
Classification Accuracy (%) 90.2 90.4

Subsample Size - 1000 Predicted 1 899 89 897 88
Base Rate - 90% Predicted 0 1 Il 3 12
Classification Accuracy (%) 91.0 90.9

Subsample Size - 2000 Predicted 1 1796 186 1795 182
Base Rate - 90% Predicted 0 4 14 5 18
Classification Accuracy (%) 90.5 90.6

*The MAP algorithm did not converge.
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Table A2 7. Hit Tables of TRICOR Applied to Variable Set V for Each
Subsample Size - Base Rate Combination

Validation Cross Validation
Actual Actual

1 1 0

Subsample Size - 500 Predicted 1 171 70 156 69
Base Rate - 50% Predicted 0 79 180 94 181
Classification Accuracy (%) 70.2 67.4

Subsample Size - 1000 Predicted 1 334 153 337 161
Base Rate - 50% Predicted 0 166 347 163 339
Classification Accuracy (%) 68.1 67.6
Subsample Size - 2000 Predicted 1 737 397 730 391
Base Rate - 50% Predicted 0 263 603 270 609
Classification Accuracy (%) 67.0 67.0
Subsample Size - 500 Predicted 1 270 80 267 104
Base Rate - 6517, Predicted 0 55 95 58 71
Classification Accuracy (7) 73.0 67.6
Subsample Size - 1000 Predicted 1 603 220 602 241
Base Rate -- 6517 Predicted 0 47 130 48 109
Classification Accuracy ('7) 73.3 71.1
Subsam ple Size - 2000 Predicted 1 1143 395 1135 399
Base Rate - 657 Predicted 0 157 305 165 301
Classification Accuracy (%) 72.4 71.8
Subsample Size - 500 Predicted 1 448 45 448 45
Base Rate 907 Predicted 0 2 5 2 5
Classification Accuracy (7%) 90.6 90.6
Subsample Size - 1000 Predicted 1 899 90 897 89
Base Rate 907/t Predicted 0 1 10 3 11
Classification Accuracy (7) 90.9 90.8
Subsamile Size 2000 Predicted 1 1785 176 1782 171
Base Rate 901/, Predicted 0 15 24 18 29
Classification Accuracy (,) 90.4 90.6
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